

KATEDRA ZARZĄDZANIA PRODUKCJĄ

Instrukcje do zajęć pracowni specjalistycznej z przedmiotu:

Metody modelowania w inżynierii produkcji

Kod przedmiotu: KSU02700, KNU02700

O p r a c o w a ł : dr inż. Arkadiusz Łukjaniuk

Białystok 2022

Ćwiczenie Nr 1:

Tworzenie modeli numerycznych 2D

CEL ĆWICZENIA: zapoznanie studentów z etapami tworzenia modeli 2D, metodami tworzenia siatki elementów skończonych i wprowadzania warunków brzegowych i wymuszeń.

PRZEBIEG ĆWICZENIA:

1. Przeprowadzić podział geometrii obiektu z rys. 1 na "patche" i zapisać w pliku **baza.dbs**.

Rys. 1. Geometria modelowanego elementu z zaznaczonymi warunkami brzegowymi i wymuszeniami oraz parametrami materiałowymi

- 2. Przeprowadzić podział tak przygotowanego modelu na elementy skończone korzystając z opcji *FEG*.
- 3. Sprawdzić poprawność stworzenia siatki elementów.
- 4. "Zszyć" model i wprowadzić parametry materiałowe.
- 5. Wprowadzić warunki brzegowe i wymuszenia.
- 6. Uzupełnić pozostałe niezbędne opcje: title, load case, executive.
- 7. Zapisać pliki z rozszerzeniem *.dbs i *.nis.
- 8. Przeprowadzić obliczenia.
- 9. Wczytać plik baza.dbs i powtórzyć operacje z punktów 2-8 dla podziału na elementy skończone przy pomocy opcji *FAM*.
- 10. Wczytać plik baza.dbs i powtórzyć operacje z punktów 2-8 dla podziału na elementy skończone przy pomocy opcji *automesh*.

- Dane projektowe wraz z rysunkiem elementu z wymuszeniami i warunkami brzegowymi;
- Ilustrację i opis poszczególnych etapów tworzenia modelu numerycznego;
- Rozkłady naprężeń wg hipotezy von Missesa i przemieszczeń wypadkowych badanego elementu dla analizowanych wariantów podziału na elementy skończone;
- Przeprowadzić analizę uzyskanych rezultatów i sprawdzić, czy nie została przekroczona granica plastyczności dla danego materiału;
- Przeanalizować wpływ metod podziału modelu na elementy skończone na wartość przemieszczeń i naprężeń w badanym elemencie;
- > Wnioski.

Ćwiczenie Nr 2:

Badanie wpływu siatki elementów skończonych na dokładność obliczeń MES (model 3D obciążenie skupione)

CEL ĆWICZENIA: zapoznanie studentów z metodami tworzenia modeli numerycznych 3D oraz wpływem rodzaju i gęstości siatki elementów skończonych na dokładność obliczeń odkształceń i naprężeń.

PRZEBIEG ĆWICZENIA:

1. Zbudować model numeryczny belki zamocowanej jednostronnie i obciążonej siłą skupioną (rys.2) zgodnie z danymi projektowymi podanymi przez prowadzącego ćwiczenie.

Rys. 2. Belka z warunkami brzegowymi i wymuszeniem

Tabela 1. Dane projektowe									
1	b	h	Ε	v	F				
m	m	m	MPa	-	kN				

2. Przeprowadzając podziały modelu belki zgodnie z poleceniami z tabeli 2 wykonać obliczenia numeryczne.

Po wczytaniu odpowiednich plików z rozszerzeniem *.dat zanotować wartości | Uz_{max} | i σ_{MES} (wg hipotezy von Misesa).

Podział x/y/z	Liczba węzłów LW	Max ugięcie belki (MES) Uz _{max}	Ugięcie belki obliczone Uzo	Błąd wyznaczenia ugięcia belki δ z	Max wartość naprężenia (MES) G MES	Max wartość naprężeń gnących G g	Błąd wyznaczenia naprężeń gnących δσ
jednostki				%	MPa	MPa	%
1/1/1							
2/2/2							
3/3/3							
6/3/3							
8/3/3							
8/3/5							
8/3/6							
10/3/6							
hexahedron							
10/3/6							
tetrahedron							
10/3/6							
wedge							
Dowolny							
hexahedron							

Tabela 2. Wyniki obliczeń i symulacji numerycznych

4. Uzupełnić tabelę 2 obliczając niezbędne wartości (wzory 1-4).

Wzory do obliczeń ugięcia belki:

$$U_{zo} = \frac{Fl^3}{3EJ} \qquad J = \frac{bh^3}{12}.$$
 (1)

Wzory do obliczeń maksymalnych naprężeń gnących (w miejscu zamocowania belki):

$$\sigma_g = \frac{Fl}{W} \qquad W = \frac{bh^2}{6}.$$
 (2)

Wzór do obliczenia błędu ugięcia belki wyznaczonego za pomocą MES:

$$\delta_{z} = \frac{U_{z} - U_{zo}}{U_{zo}} 100\%$$
 (3)

Wzór do obliczenia błędu naprężeń wyznaczonych za pomocą MES:

$$\delta_{\sigma} = \frac{\sigma_{MES} - \sigma_g}{\sigma_g} 100\% \,. \tag{4}$$

- Dane projektowe i rysunek belki z wymuszeniami i warunkami brzegowymi;
- Uzupełnioną tabelę 2 oraz po 3 wybrane rozkłady naprężeń wg hipotezy von Misesa i przemieszczeń belki w kierunku osi "z";
- Wykres zmian ugięć belki otrzymanych za pomocą MES w funkcji liczby węzłów | Uz_{max} | =f(LW);
- > Wykres zmian wartości błędu wyznaczenia ugięcia belki δ_z za pomocą MES w funkcji liczby węzłów $\delta_z = f(LW)$;
- > Wykres zmian maksymalnych wartości naprężeń otrzymanych za pomocą MES w funkcji liczby węzłów $\sigma_{MES} = f(LW);$
- > Wykres zmian wartości błędu wyznaczenia naprężeń gnących za pomocą MES w funkcji liczby węzłów $\delta_{\sigma} = f(LW);$
- Przeprowadzić analizę uzyskanych rezultatów;
- Przeanalizować wpływ rodzaju elementów skończonych na błędy wyznaczenia ugięć i naprężeń w belce;
- Sprawdzić, czy nie została przekroczona granica plastyczności (St3);
- > Wnioski.

Ćwiczenie Nr 3:

Badanie wpływu siatki elementów skończonych na dokładność obliczeń MES (model 3D, obciążenie rozłożone)

CEL ĆWICZENIA: zapoznanie studentów z wpływem rodzaju i gęstości siatki elementów skończonych na dokładność obliczeń odkształceń i naprężeń.

PRZEBIEG ĆWICZENIA:

1. Zbudować model numeryczny belki zamocowanej jednostronnie i poddanej obciążeniu rozłożonemu (rys.3) zgodnie z danymi projektowymi podanymi przez prowadzącego ćwiczenie.

Rys. 3. Belka z warunkami brzegowymi i obciążeniem rozłożonym

Tabela 5. Da	ine projektowe					
1	b	h	Ε	v	F	q
m	m	m	MPa	-	kN	kPa

Tabela 3. Dane projektowe

2. Przeprowadzając podziały modelu belki zgodnie z poleceniami w tabeli 4 wykonać obliczenia numeryczne, a wymagane wyniki obliczeń wpisać do tabeli.

Podział x/y/z	Liczba węzłów LW	Max ugięcie belki (MES) Uz _{max}	Ugięcie belki obliczone Uzo	Błąd wyznaczenia ugięcia belki δ z	Max wartość naprężenia (MES) G MES	Max wartość naprężeń gnących G g	Błąd wyznaczenia naprężeń gnących δ _σ
jednostki				%	MPa	MPa	%
1/1/1							
2/2/2							
3/3/3							
6/3/3							
8/3/3							
8/3/5							
8/3/6							
10/3/6							
hexahedron							
Dowolny							
hexahedron							

Tabela 4. Wyniki obliczeń i symulacji numerycznych

5. Uzupełnić tabelę 4 obliczając niezbędne wartości (wzory studenci powinni znaleźć samodzielnie).

- > Dane projektowe i rysunek belki z wymuszeniami i warunkami brzegowymi;
- Uzupełnioną tabelę 4 oraz po 3 wybrane rozkłady naprężeń wg hipotezy von Misesa (Hubera) i przemieszczeń belki w kierunku osi "z";
- Wykres zmian ugięć belki otrzymanych za pomocą MES w funkcji liczby węzłów |Uz_{max}|=f(LW);
- ➢ Wykres zmian wartości błędu wyznaczenia ugięcia belki δ_z za pomocą MES w funkcji liczby węzłów δ_z =f(LW);
- > Wykres zmian maksymalnych wartości naprężeń otrzymanych za pomocą MES w funkcji liczby węzłów $\sigma_{MES} = f(LW);$
- Wykres zmian wartości błędu wyznaczenia naprężeń gnących za pomocą MES w funkcji liczby węzłów $\delta_{\sigma} = f(LW);$
- Przeprowadzić analizę uzyskanych rezultatów;
- Przeanalizować wpływ rodzaju elementów skończonych na błędy wyznaczenia ugięć i naprężeń w belce;
- Sprawdzić, czy nie została przekroczona granica plastyczności (St3);
- > Wnioski.

Ćwiczenie Nr 4:

Badanie wpływu karbu na rozkład naprężeń

CEL ĆWICZENIA: zapoznanie studentów z wpływem karbu na wytrzymałość elementów konstrukcyjnych

PRZEBIEG ĆWICZENIA:

1. Wykorzystując model numeryczny z ćwiczenia Nr 2 (siatka hexahedron i podział 10/4/6, materiał Al) przeprowadzić obliczenia przemieszczeń i naprężeń belki dla wariantów usytuowania karbów jak na rys. 5.

Rys. 5. Warianty umiejscowień karbu w belce

- 2. Wykorzystując dane obliczeń uzupełnić tabelę 10.
- 3. Wyznaczyć współczynnik zwiększenia ugięcia belki K_z i zwiększenia wartości naprężeń K_σ z następujących zależności:

$$K_{z} = \frac{\left|U_{z \max}\right|_{i} - \left|U_{z \max}\right|_{BK}}{\left|U_{z \max}\right|_{BK}} 100\%,$$
$$K_{\sigma} = \frac{\sigma_{i} - \sigma_{BK}}{\sigma_{BK}} 100\%,$$

gdzie: $|U_{z \max}|_{i}$ - wartość bezwzględna maksymalnego ugięcia belki przy i-tym położeniu karbu;

 $|U_{z \max}|_{BK}$ - wartość bezwzględna maksymalnego ugięcia belki bez karbu;

 $\sigma_{\rm BK}$ - wartość maksymalnego naprężenia w belce bez karbu (wg hipotezy von Misesa);

 σ_i - wartość maksymalnego naprężenia w belce przy i-tym położeniu karbu;

T 1 1 10 W	·1· 11· /	1	1 1		• , •	• / 11
lahela III Wy	Uniki obliczen	wnxxx	karhii na	Wartosci	110160 1 119	nrezen w helce
	VIIIKI UUIIUZUII	w pry w u	Karou na	waitosei		
		1 2			\mathcal{O}	1 (

	· · · · · · · · · · · · · · · · · · ·			
Miejsce karbu	Max ugięcie belki (MES) Uz _{max}	Wzrost ugięcia belki K z	Max wartość naprężenia (MES) G MES	Wzrost naprężeń gnących K σ
	mm	%	MPa	%
Brak karbu		0		0
1				
2				
3				
4				
5				
6				
7				
8				
9				

- > Dane projektowe i rysunki wariantów rozmieszczenia karbu w belce;
- ➢ Wybrane rozkłady przemieszczeń Uz i naprężeń wg hipotezy von Misesa
- Przeprowadzić analizę uzyskanych rezultatów;
- Sprawdzić, czy nie została przekroczona granica plastyczności (Al);
- > Wnioski.

Ćwiczenie Nr 5:

Modelowanie wydłużeń i naprężeń termicznych

CEL ĆWICZENIA: zapoznanie studentów z tworzeniem modeli numerycznych do obliczeń wydłużeń i naprężeń termicznych, a także zbudowanie modelu bimetalu i przeprowadzenie obliczeń numerycznych.

PRZEBIEG ĆWICZENIA:

1. Zbudować model numeryczny belki zamocowanej jednostronnie - rys. 6a (siatka hexahedron i podział 10/3/6) i wprowadzić warunki brzegowe (nodal temp. – tabela 11), a następnie wykonać obliczenia numeryczne przemieszczeń i naprężeń belki.

Tabela 11. Dane projektowe

Rys. 6. Geometria belki z warunkami brzegowymi: a) zamocowanej jednostronnie; b) zamocowanej dwustronnie; c) model bimetalu.

- 2. Zbudować model numeryczny belki zamocowanej dwustronnie rys. 6b i wykonać obliczenia numeryczne przemieszczeń i naprężeń belki.
- 3. Zbudować model numeryczny bimetalu rys. 6c i wykonać obliczenia numeryczne przemieszczeń i naprężeń w nim.
- 4. Dobrać tak wartość temperatury NT2, aby bimetal wygiął się o 5 mm.

- Dane projektowe i rysunki wariantów analizowanych modeli;
- Rozkład przemieszczeń Ux i naprężeń wg hipotezy von Misesa (dla modelu z rys. 6a);
- Wynik obliczenia (z ogólnie znanego wzoru) wydłużenia belki w kierunku osi "x" i porównanie z wynikami obliczeń numerycznych;
- Rozkłady przemieszczeń Ux, Uy i Uz oraz naprężeń wg hipotezy von Misesa (dla modelu z rys. 6b);
- Rozkład przemieszczeń Uy oraz naprężeń wg hipotezy von Misesa (dla modelu z rys. 6c);
- Widoki deformacji wariantów modeli;
- Przeprowadzić analizę uzyskanych rezultatów i sprawdzić, czy nie została przekroczona granica plastyczności dla badanych materiałów;
- ➢ Wnioski.

Ćwiczenie Nr 6:

Obliczanie rozkładu pola temperatury w stanie ustalonym

CEL ĆWICZENIA: zapoznanie studentów z rodzajami warunków brzegowych i wymuszeń występujących przy rozwiązywaniu zagadnień termicznych, zbudowanie modelu numerycznego i przeprowadzenie obliczeń numerycznych rozkładu pola temperatury w stanie ustalonym.

PRZEBIEG ĆWICZENIA:

1. Zbudować model numeryczny układu dwóch izolowanych termicznie rur metalowych (rys.4) zgodnie z danymi projektowymi podanymi przez prowadzącego ćwiczenie.

	a	11 1	1 / 1	1	1	•	•	••			•
Rvs 4	(ieometria	układu	dwoch	rur zak	conanych	W 716	emi i	1 170	lowanych	termic	znie.
11,55. 1.	Geometria	amada	anoon	I'ui Zui	sopungen	· · 21		120	10 wany en	terme	

a1	a2		b		a	R	R1	R	2	Tz		Тр	Twz
m	m		m		m	r	n	n	1	$^{0}\mathrm{C}$		$^{0}\mathrm{C}$	⁰ C
	λ		ρ		C)				λ		ρ	Cp
ziemia	W/(m*de	g)	kg/m	3	J/(kg*	deg)	izol	acja	W/((m*deg)	kg	g/m ³	J/(kg*deg)

1 a 0 0 a 0. Danc projektow

2. Wprowadzić wymuszenia i warunki brzegowe dla wariantu **W1** (tabela 6) i zapisać odpowiedni plik z rozszerzeniem *.nis oraz przeprowadzić obliczenia rozkładu pola temperatury.

	Warunki brzeg	Przewodność cieplna izolacji	
Warianty obliczeń	T ₀ [⁰ C]	h [W/(m ² *deg)]	λ _{iz} [W/(m*deg)]
W1			
W2			
W3			
W4			

Tabela 6. Parametry wariantów obliczeń

- 3. Wykorzystując dane z plików *.out obliczyć średnią wartość temperatury na obwodzie rury zasilającej T_{zsr} i powrotnej T_{psr} .
- 4. Obliczyć straty ciepła \mathbf{Q}_{c} układu rur na 1 mb rurociągu wykorzystując następujące zależności:

$$Q_{c} = Q_{z} + Q_{p};$$

$$Q_{z} = \frac{2\pi R_{1} \cdot (T_{z} - T_{zsr}) \cdot \lambda_{iz}}{R_{1} - R_{2}};$$

$$Q_{p} = \frac{2\pi R_{1} \cdot (T_{p} - T_{psr}) \cdot \lambda_{iz}}{R_{1} - R_{2}}.$$

5. Powtórzyć czynności z punktów 2-4 dla pozostałych wariantów obliczeń (zmiany warunków brzegowych dokonywać w pliku *.nis poprzez edycję tekstu i zapis nowego pliku*.nis).

TTT		Straty ciepła					
Warianty	T1	T2	T3	T4	T5	T6	Oc
obliczeń	⁰ C	[W/mb]					
W1							
W2							
W3							
W4							

Tabela 7. Wyniki obliczeń

- Dane projektowe i rysunek układu rur z wymuszeniami i warunkami brzegowymi;
- Uzupełnioną tabelę 7;
- Rozkłady pola temperatury dla poszczególnych wariantów;
- Przeprowadzić analizę uzyskanych rezultatów;
- Przeanalizować wpływ wartości temperatury otoczenia, przewodności cieplnej izolacji i współczynnika konwekcyjnej wymiany ciepła h na rozkład pola temperatury i wartości strat ciepła;
- Wnioski

Ćwiczenie Nr7

Wykorzystanie plików igs, dwg, dxf do tworzenia modeli numerycznych

CEL ĆWICZENIA: zapoznanie studentów z możliwością importowania i wykorzystania plików z innych programów do budowy modeli numerycznych w programie NISA.

PRZEBIEG ĆWICZENIA:

1. Wczytać plik *.igs (udostępniony przez prowadzącego ćwiczenia – rys. 8a), a następnie zbudować modele numeryczne przy różnych metodach tworzenia siatki elementów skończonych, wprowadzić warunki brzegowe i wymuszenia (rys. 8a) oraz przeprowadzić obliczenia.

Rys. 8. Geometria analizowanego elementu konstrukcyjnego: a) po wczytaniu pliku *. igs z zaznaczonymi miejscami wprowadzania warunków brzegowych i wymuszeń, b) przykładowy podział na elementy skończone w opcji automesh.

- Opis procedury tworzenia modelu numerycznego przy pomocy plików importowanych;
- Rysunki ilustrujące siatki elementów skończonych uzyskanych przy różnych opcjach dostępnych w "automeshu";
- Tabelę z zestawieniami przemieszczeń wypadkowych oraz naprężeń tnących i wg hipotezy Hubera;
- Przykładowe ilustracje uzyskanych przemieszczeń i naprężeń analizowanych modeli.
- Analizę rezultatów obliczeń;
- > Wnioski.

4. LITERATURA

- 1. Cranes Software: NISA DISPLAY-IV. Troy Michigan, USA 2011.
- 2. Jan Sikora: Numeryczne metody rozwiązywania zagadnień brzegowych. Podstawy metody elementów skończonych i metody elementów brzegowych. Wydawnictwo: Politechnika Lubelska, 2009.
- 3. Kazimierz Król: Metoda elementów skończonych w obliczeniach konstrukcji. Radom : Politechnika Radomska, 2007.
- 4. Eugeniusz Rusiński, Jerzy Czmochowski, Tadeusz Smolnicki: Zaawansowana metoda elementów skończonych w konstrukcjach nośnych. Wrocław : Oficyna Wydawnicza Politechniki Wrocławskiej, 2000.
- 5. http://wiki.david-3d.com/david3_user_manual/overview.
- 6. http://downloads.david-3d.com/SLS-2/DAVID-SLS-2-Quickguide-EN_web.pdf.
- 7. http://downloads.david-3d.com/SLS-2/DAVID-SLS-2-Quickguide-RU_web.pdf.
- 8. http://omni3d.com/files/pl/manual.pdf.9
- 9. http://www.konstrukcjeinzynierskie.pl/analizy-symulacje/31-zyczenieredakcji/wybor-redakcji-2010/76-raport-mes.html
- 10.http://camdivision.pl/books/NX_ST_preview/FLASH/index.html